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Summary

While the pathogenesis of Alzheimer’s disease (AD) is unclear, amyloid-b plaques

remain major lesions in the brain of individuals with AD. Likewise, amyloid-b is one of

the best-studied proteins relating to the pathogenesis of AD. Indeed, the pathological

diagnosis of AD tends to be congruous with the quantity of amyloid-b. However, it is

important to recognize that pathological diagnosis merely represents the association of a

pattern of pathological changes with a clinical phenotype. Therefore, it should be

acknowledged that, although amyloid-b detection and semiquantification have

some diagnostic utility, the simple presence of amyloid plaques, as with proteinaceous

accumulations in essentially all neurodegenerative diseases, does not presume aetiology.

Thus, in this review, we discuss the role of amyloid-b in the pathogenesis of AD and

provide an alternative view to the widely accepted dogma.
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Amyloid-b pathology in Alzheimer’s disease (AD)

Senile plaques, and their major protein component amyloid-b
(Glenner and Wong 1984a, b; Masters et al. 1985), comprise

one of two principal microscopic lesions in AD (Mirra et al.

1991; Hyman and Trojanowski 1997). Senile plaques contain

a central core made of 6–10 nm amyloid-b protein filaments

arranged as bundles radiating from the centre (Kidd 1964).

The core is surrounded by an argyrophilic rim of dystrophic

synapses and neurites (mainly axons) often containing paired

helical filaments and altered membranes. Such alterations in

close proximity to the plaque core are often viewed as evi-

dence of the destructive nature of amyloid-b (Geddes et al.

1986). Indeed, regions severely affected by disease, including

the hippocampus and frontotemporal cortices, show a spatial

correlation, albeit not perfect, between amyloid-b plaques and

neuronal cell death (Rogers and Morrison 1985). Three stages

in the gradual evolution of the disease can be distinguished

(Braak and Braak 1991) with amyloid-b plaques, being first

seen in the basal temporal neocortex (stage A). From there,
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the alterations spread to adjoining neocortical areas, initially

sparing the ‘belt’ regions and primary motor and sensory

cortices. The perforant pathway then becomes studded with

amyloid-b deposits as it extends through the hippocampal

formation (stage B). The end stage of AD exhibits amyloid-b
plaques in virtually all neocortical areas (stage C).

Amyloid-b: facts or artifacts?

The level of amyloid-� is increased in AD

The widely accepted Amyloid Cascade Hypothesis suggests

that amyloid-b is the aetiological or rate-limiting factor for

development of AD (Selkoe 2001). The increased number of

amyloid-b plaques in AD, exceeding those found in ‘normal

ageing’, and their localization in brain regions related to

cognitive deficits that occur in AD tend to support this

hypothesis. The relevant fact that serves as the foundation

for this argument is ‘the increase of amyloid-b plaques in

AD’. This fact (sic) nevertheless needs to be interpreted in

the light of an expanding knowledge of AD pathogenesis.

With this in mind, the point of view that amyloid-b is ‘con-

sequence’ rather than ‘cause’ is gaining more and more sup-

port. This alternative to the Amyloid Hypothesis predicts that

factors that cause AD, via oxidative stress, would also lead to

increased amounts of amyloid-b.
Oxidative stress has been shown to specifically increase the

generation of amyloid-b (Frederikse et al. 1996; Misonou

et al. 2000; Paola et al. 2000) and experimental conditions

that induce oxidative stress (Xiong et al. 1997) such as ischae-

mia, hypoglycaemia and traumatic brain injury, all up-

regulate amyloid-b protein precursor (AbPP) and its mRNA

in animal models and culture systems (Hall et al. 1995;

Jendroska et al. 1995; Yokota et al. 1996; Shi et al. 1997;

Murakami et al. 1998; Shi et al. 1998). Further, the role of

AbPP and amyloid-b as acute phase reactants to cellular stress

is supported by increases following axonal injury (Gentleman

et al. 1993; Blumbergs et al. 1995), loss of innervation

(Wallace et al. 1993), excitotoxic stress (Topper et al. 1995;

Panegyres 1998), heat shock (Ciallella et al. 1994), oxidative

stress (Yan et al. 1994; Frederikse et al. 1996), ageing

(Higgins et al. 1990; Nordstedt et al. 1991; van Gool et al.

1994) and inflammatory processes (Goldgaber et al. 1989;

Buxbaum et al. 1992; Brugg et al. 1995; Buxbaum et al.

1998). Therefore, in AD, where there is cellular stress early

in disease [e.g. mild cognitive impairment (Pratico et al.

2002)], one would predict consequent increases in amyloid-b
that colocalize with ‘affected’ areas. Such a notion is consist-

ent with AbPP/superoxide dismutase (SOD) knockout mice

where absence of SOD leads to increases in amyloid-b (Li

et al. 2004).

Unbiased stereological counting indicates that during nor-

mal ageing there is little or no cell loss despite, as pointed out

above, the presence of an increasing number of senile plaques

(Long et al. 1999). Even the hyper-physiologic levels of

amyloid-b in AD transgenic mice (Hsiao et al. 1996) only

lead to senile plaque formation in middle-aged mice and do

not lead to inevitable neuronal death (Irizarry et al. 1997;

Takeuchi et al. 2000). Moreover, like their human counter-

parts, senile plaques in these experimental models are pre-

ceded by oxidative stress (Pappolla et al. 1998; Smith et al.

1998; Pratico et al. 2001). This again suggests that amyloid-b
is not driving the pathogenic process but is rather a con-

sequence of the disease state.

All familial AD mutations increase amyloid-�

The existence of germline mutations in AbPP that lead to

familial, autosomal dominant AD is central to the Amyloid

Cascade Hypothesis. All mutations in AbPP (as well as pre-

senilin 1/2) increase the production of amyloid-b 1–42. On the

other hand, it should be noted that the double mutant AbPP,
not only with the FAD-linked V642I mutation but with the

deletion of the 41st and 42nd residues in the amyloid-b
region, is able to effectively induce neuronal cell death

(Yamatsuji et al. 1996). Also, in response to anti-AbPP anti-

body binding, wild type AbPP without the 41st and 42nd

residues in the amyloid-b region causes neuronal cell death

as strongly as intact wild type AbPP. The Swedish mutation in

AbPP (NL-AbPP) also can cause neuronal cell death, even

when NL-AbPP dose not have the 41st and 42nd residues in

the amyloid-b region (Hashimoto et al. 2001). Therefore,

increased amyloid-b via AbPP and presenilin 1/2 germline

mutation would not be a ‘toxic’ process but instead suggests

another mechanism of cytotoxicity in neuronal cell culture.

Among the support for this concept are double transgenic,

mice studies that show that neuronal deficiency of presenilin

1 inhibits amyloid-b formation but has no effect on cognition

(Dewachter et al. 2002). Therefore, it would appear that, at

least in transgenic animals and cell cultures, amyloid-b is not

the underlying problem; rather, it is the presence of mutated

AbPP that results in cognitive deficits and neurodegeneration.

In this regard, it is interesting to note that antioxidants are

able to prevent behavioural deficits in the AbPP transgenic

animals often independently of alterations in amyloid-b
pathology (Joseph et al. 2003). These data are consistent

with the idea that oxidative stress temporally precedes

amyloid-b (Pratico et al. 2001) at the time point where behav-

ioural alterations first manifest.
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The notion of amyloid-b deposits per se as neurotoxic

lesions may be called into question (Smith et al. 2000) in the

light of the early appearance of sequelae of oxidative stress

relative to amyloid-b deposits (Nunomura et al. 2000;

Nunomura et al. 2001), while the concept of amyloid-b
deposits as protective in nature makes mechanistic sense in

both familial autosomal dominant and sporadic AD.

Neurones respond to oxidative stress, both in vitro and in

vivo, by increasing amyloid-b production (Yan et al. 1995),

and this increase in amyloid-b is associated with a consequent

reduction in oxidative stress (Nunomura et al. 2000;

Nunomura et al. 2001). Proteins, such as amyloid-b, that are
induced under oxidative conditions and act to lessen oxidative

damage are typically thought of as antioxidants, and we have

likewise demonstrated that amyloid-b is a bona fide antiox-

idant that can act as a potent SOD (Cuajungco et al. 2000). By

this logic, AD kindreds with AbPP mutations lose, by virtue of

mutation, effective antioxidant capacity, while the prodigious

amyloid-b deposits themselves are signatures not of neuro-

toxicity per se but of oxidative imbalance and an oxidative

stress response. This is consistent with the data that virtually

everyone over the age of 40 years contain detectable amyloid-b
deposits, an age, not coincidentally, where redox alterations

first manifest (Nunomura et al. 2001). The alternate view that

everyone at mid-life is on the verge of developing AD is

manifestly extreme and not supported by the fact that a

large percentage of cognitively intact, aged individuals contain

amyloid-b loads equivalent to patients with AD (Davis et al.

1999). Thus, the current interpretation of the relationship

between AbPP mutations and disease, which is explained as

a gain of function process, may require some revision. We

suggest that the relationship between amyloid-b and disease is

explained as a loss of function process, resulting in increased

susceptibility to oxidative stress or loss of antioxidant protec-

tion. The prodigious amyloid-b deposits in brain and blood

vessels are thus the pathological signatures of the loss of func-

tion and reflect an altered steady state as a result of the muta-

tion. With this paradigm in mind, it is not surprising that free

radicals are among the best inducers of AbPP protein expres-

sion and consequent amyloid-b production (Yan et al. 1995).

Amyloid-� is toxic

Fibrillar or aggregated forms of amyloid-b, like those present

in the senile plaques, are toxic to cultured neurones in vitro

(Pike et al. 1991). However, in vivo, the presence and density

of amyloid-b correlates weakly with the onset and severity of

AD (Davies et al. 1988), and therefore there was a shift

towards determining whether the presence of the soluble

form of amyloid-b in the brain may be a better predictor of

the disease (McLean et al. 1999). Specifically, the oligomers,

not monomers, of this form of amyloid-b seem to play an

important role, as shown by augmented presence of these

oligomers during the expression of mutations in AbPP or

presenilin (Xia et al. 1997), as well as by their capacity to

interfere cognitive function in vivo when microinjected into

the brains of rodents (Walsh et al. 2002; Cleary et al. 2005).

However, detracting from the importance of these species, the

temporal relationship between oligomeric amyloid-b and oxi-

dative stress is unclear. Even in the transgenic Tg2576 mouse

model, which produces large amounts of amyloid-b, oligo-

meric amyloid and oxidative stress appear at approximately

the same age (Kawarabayashi et al. 2001; Pratico et al. 2001).

In fact, it has recently been shown that amyloid growth occurs

by the addition of monomers in a reaction distinct from, and

competitive with, formation of potentially toxic oligomeric

intermediates (Collins et al. 2004). If this finding can also be

proved for amyloid-b, the formation of amyloid-b plaques

could represent the protective process against toxic oligomeric

amyloid-b; the level of oligomeric amyloid-b in transgenic

mice and AD brain would thus be of limited significance

because there are large amounts of amyloid-b plaques in

both brains. Therefore, while oligomers have certainly

rejuvenated the amyloid-b hypothesis, their role in disease is

uncertain. Further study is required to adequately assess the

relationship between oxidative stress and oligomer formation

as well as between fibril and oligomer formation.

Neurotoxicity in cultured cells may also be an artifact of in

vitro conditions (Rottkamp et al. 2001), an idea further sup-

ported by the findings that neither isolated senile plaques nor

immobilized amyloid-b elicit neurotoxicity in vivo or in vitro

(Frautschy et al. 1992; Canning et al. 1993; DeWitt et al.

1998). Thus, the capacity of amyloid-b to induce oxidative

stress remains controversial (Walter et al. 1997). Recent data

suggest that the oxidant properties of amyloid-b may stem

from its capacity to interact with transition metals and medi-

ate toxicity via redox-active ions that precipitate lipid peroxi-

dation and cellular oxidative stress (Rottkamp et al. 2001).

Conclusion

While amyloid-b is associated essentially with aetiology by

various laboratories, the observed decrease in oxidative

damage with amyloid-b accumulation suggests, rather, a

mechanism of survival (Perry et al. 2000; Smith et al. 2000;

Joseph et al. 2001; Rottkamp et al. 2002; Smith et al. 2002a;

Smith et al. 2002b; Arrasate et al. 2004; Lee et al. 2004).

Moreover, as a consequence of age-related oxidative stress,

there is an up-regulation of amyloid-b resulting in senile plaques.

Amyloid-b lesions serve antioxidant functions and limit
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age-related neuronal dysfunction. In AD, this age-related oxi-

dative stress is compounded by macromolecules (Sayre et al.

1997) and heavy metals (Calingasan et al. 1999; Takeda et al.

2000) as additional sources of oxidant stress that overcome

antioxidant effects of enhanced amyloid-b production, leading

to neurodegeneration and consequent dementia. In the light

of these observations, efforts aimed solely at eliminating

amyloid-b appear short-sighted.
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